If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9m^2+3m-4=0
a = 9; b = 3; c = -4;
Δ = b2-4ac
Δ = 32-4·9·(-4)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{17}}{2*9}=\frac{-3-3\sqrt{17}}{18} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{17}}{2*9}=\frac{-3+3\sqrt{17}}{18} $
| 9x+8=-136 | | X/2-x/6=1+x/3 | | 4x^2-20x+129=0 | | 3*2/3=n | | X=10+5x2 | | 7=5x+2-8 | | 2.3/8+y=5.3/4 | | 0,2-3b/2+b/5=0,6-2b/5 | | 6c=18c= | | 8y-3=5(y-1)/3y | | -4(x-2)=2-x | | X=10+5x4 | | z=z–3+5 | | 4x+4=-1+5x | | 3(p+4)=(2p+5) | | 40=-14x+4x | | X=10+5x3 | | 24-4x=7+4x | | 3÷5x+2=11 | | 4/x+2x=6 | | 4/x+2x=4 | | 0=x*2+8x-484 | | 3-4x-5=10 | | 75n=115n | | y=180-5y-18 | | 0.6x+2=11 | | y=180-(5y-18) | | 3y^2=17 | | 4.5+2y=6.1 | | 14+24n=35+17n | | 4+5n=6+3n | | 7m+3-4m=- |